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Image quality assessment (IQA) is a fundamental problem in image processing. While in practice almost
all images are represented in the color format, most of the current IQA metrics are designed in gray-scale
domain. Color influences the perception of image quality, especially in the case where images are subject
to color distortions. With this consideration, this paper presents a novel color image quality index based
on Sparse Representation and Reconstruction Residual (SRRR). An overcomplete color dictionary is first
trained using natural color images. Then both reference and distorted images are represented using
the color dictionary, based on which two feature maps are constructed to measure structure and color
distortions in a holistic manner. With the consideration that the feature maps are insensitive to image
contrast change, the reconstruction residuals are computed and used as a complementary feature.
Additionally, luminance similarity is also incorporated to produce the overall quality score for color
images. Experiments on public databases demonstrate that the proposed method achieves promising
performance in evaluating traditional distortions, and it outperforms the existing metrics when used
for quality evaluation of color-distorted images.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Image quality assessment (IQA) is fundamental in image
processing. Modern IQA metrics build computational models to
predict image quality in a perceptually consistent way [1–3]. The
current IQA models can be classified into full-reference (FR)
[4–11], reduced-reference (RR) [12,13] and no-reference (NR)
[14–21], depending on the amount of reference information.
FR-IQA is useful for benchmarking image processing algorithms,
which is the focus of this work.

Extensive FR image quality metrics have been reported in the
literature. One popular FR metric is the structural similarity (SSIM)
index [4], which is designed based on the assumption that human
eyes judge image quality mainly according to the structure degra-
dations. By combining image structure, contrast and luminance,
SSIM can predict image quality consistently with human percep-
tion. Following SSIM, improved versions have also been proposed
to improve the performance of visual quality estimations, such as
the multi-scale structural similarity (MS-SSIM) [5] and
information-content-weighted structural similarity (IW-SSIM)
[6]. Sheikh et al. [7] proposed the visual information fidelity (VIF)
index by measuring the mutual information shared between the
reference and distorted images. Larson et al. [8] proposed the most
apparent distortion (MAD) model, which adopts different strate-
gies to measure distortions in low-quality and high-quality images.
Liu et al. [9] proposed to use gradient similarity (GSM) to measure
both structure and contrast distortions simultaneously in images.
In [10], Zhang et al. measured image distortions by combining
phase congruency and gradient, and proposed the feature similar-
ity (FSIM) model. Zhang et al. [11] proposed the sparse structural
similarity (SSS) index based on global sparse dictionary. Images
are first decomposed into several layers with different visual
importance. The image quality score is then computed by measur-
ing the similarity of sparse coefficients of each layer and weighted
by their relative importance. Notable success has been achieved by
the current IQA metrics in revealing some aspects of the influence
of different types of distortions on the perceived image quality.
However, most of the current IQA metrics are designed in
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gray-scale domain. In practice, almost all images are represented in
the color format. Color also influences the perception of image
quality, especially in the case where images are subject to color
distortions. Currently, there are only a few studies exploring the
visual quality assessment for colorful images.

In [10], the authors extended the FSIM index to a color image
quality metric by incorporating color similarity simply. Specifi-
cally, the original images are first converted into YIQ color space.
Then the chrominance information conveyed by I and Q are
directly used to evaluate the color similarity. Chang et al. [22] pre-
sented a color IQA metric based on independent component anal-
ysis (ICA). A feature detector was first trained using color images
based on ICA. Image structure features were then extracted for
visual quality prediction by using the feature detector. In [23],
Kolaman et al. introduced the quaternion structural similarity
(QSSIM) index to evaluate the quality of color images. Color distor-
tion is measured based on the quaternion, which is efficient for
color image processing [24]. These quality metrics for color images
are mainly designed simply by extending existing IQAmetrics from
the gray-level domain to color domain. They rarely investigate the
influence of color distortions specifically in color images. Thus, the
effective IQA metric for color images is much desired in the
research community.

In order to measure color distortions effectively in image
quality assessment, we present a color image quality metric
based on Sparse Representation and Reconstruction Residual
(SRRR). The underlying idea is to measure both structure and
color distortions in a holistic manner using an overcomplete
color dictionary, which is trained from natural color images.
Dictionary-based sparse representation is employed to design
the quality model, because it has been proven that dictionaries
trained using natural images consist of basis vectors, which
behave similarly to the simple cells in the primary visual cortex
[30,31]. Therefore, it is highly related to the human visual per-
ception [11]. Furthermore, a color dictionary is adopted, which
can effectively encode the inter-channel color correlations [28],
thus facilitating the evaluation of color distortions in images.
We believe these characteristics of sparse representation are
needed in visual quality assessment. In the proposed method,
the reference and distorted images are first represented using
the color dictionary, producing the sparse coefficients. Then
two feature maps are generated, and the similarity between
them is employed to measure the structure and color distortions.
Since the feature map features are not sensitive to contrast
change in images, the reconstruction residuals are also computed
and used as a complementary feature. Finally, luminance similar-
ity is incorporated to generate the overall quality score. The
experimental results on public image quality databases demon-
strate that the proposed metric is effective in evaluating both
color distortions and traditional distortions in images, and it out-
performs the state-of-the-arts.
2. Proposed quality model

Fig. 1 shows the diagram of the proposed quality model. The
proposed method consists of three major components, namely
sparse feature similarity, reconstruction residual similarity and
luminance similarity. The first two features are both extracted
based on sparse representation. The sparse representation-based
feature maps can effectively capture the structure and color distor-
tions in a holistic manner, while the reconstruction residual maps
can capture the contrast changes in images. Feature map-induced
weighting is used to adapt to the characteristics of the Human
Visual System (HVS). Finally, luminance similarity is incorporated
to generate the overall quality score.
2.1. Sparse representation

Sparse representation has been proved promising in object
recognition [25–27]. It is generally believed that sparse represen-
tation can capture the underlying structures in images, based on
which slightly higher level features can be extracted. The
principle of sparse representation is to represent a signal as a
linear combination of basis vectors in an overcomplete dic-

tionary. With such an overcomplete dictionary D¼fdigKi¼1 2Rn�K

ðn < KÞ, where n denotes the dimension of the basis vector
and K is the number of basis vectors, a given signal y can be
represented as:

y ¼ Dx ¼
XK
i¼1

xidi; s:t: ky � Dxk2 6 �; ð1Þ

where x is the representation vector, di is the ith basis vector, k � k2
is the ‘2 norm, and � is the representation error.

In the representation of a signal, we always hope to approxi-
mate it using as few basis vectors as possible. So the sparse repre-
sentation of a signal y can be achieved by:

min
x

kxk0; s:t: ky � Dxk2 6 �; ð2Þ

where k � k0 denotes the ‘0 norm, which counts the number of non-
zero elements in the representation vector x.

In sparse representation, the overcomplete dictionary is usu-
ally trained using a large number of natural image patches. In
this work, we aim to evaluate the quality of images in face of
both color and traditional distortions, so a color dictionary is
employed. It has been shown that with a color dictionary, the
structure and color of an image can be represented in a holistic
manner [28]. In this paper, we employ the K-SVD algorithm [29]
to train the dictionary. Fig. 2 shows an example of dictionary
learning using twelve natural images, together with the pro-
duced overcomplete color dictionary. In this example, 10,000
local patches of size 8� 8� 3 are first selected randomly from
the training images. In order to highlight structures, the mean
values of the patches are subtracted. Then each color patch is
rearranged into a 192� 1 column vector and used for training.
Fig. 2(b) shows the produced color dictionary of size
192� 256. Note that each 192� 1 basis vector is rearranged into
a 8� 8� 3 patch for visualization. Further details on the K-SVD
dictionary learning algorithm can be found in [29]. It is worth
mentioning that we utilize the RGB color space in this paper,
because it is the most commonly used color space in digital
cameras and computer monitors. Another reason for using RGB
color space is that any color space conversion changes the struc-
ture of noise [28], which is one of the most important distortion
types we are to evaluate.

It is observed from Fig. 2(b) that most of the basis vectors in the
dictionary are edge patterns. These patterns have been shown sim-
ilar to the receptive fields of neurons in the primary visual cortex
[30]. Furthermore, the correlation between different color channels
can be captured with these basis vectors [28], so that color distor-
tions can be effectively represented based on the color dictionary.
Images captured in natural scenes are sparse and redundant in nat-
ure, and sparse representation naturally mimics the characteristics
of the human visual system by extracting sparse structures from
images [11]. With these considerations, sparse representation is
expected to produce better perceptual features for IQA, boosting
metric performance. In this paper, the Orthogonal Matching Pur-
suit (OMP) algorithm is employed to obtain the sparse coefficients
[32].



Fig. 1. Diagram of the proposed quality model.

Fig. 2. Training images and the color dictionary (Dict. I: 192� 256). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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2.2. Sparse feature similarity

The first feature in the proposed method is generated based on
sparse representation of image patches. Specifically, for an image
in the RGB color space, it is first partitioned into non-overlapping
local patches of size 8� 8� 3. Then each patch is converted into
a 192� 1 column vector. Then the overcomplete color dictionary
is used to decompose the patches, producing the representation
vectors, i.e., sparse coefficients. Given a reference image patch yr

and the corresponding distorted image patch yd, they are first
represented using the color dictionary D as follows:

yr � Dxr ; ð3Þ
yd � Dxd; ð4Þ
where xr and xd are the representation vectors of yr and yd, respec-
tively. In this paper, the representation vectors of all patches in the

reference and distorted images are denoted by xr
i

� �N
i¼1 and xd

i

� �N

i¼1,
where N is the total number of patches.

With the representation vectors, we propose to generate two
feature maps. To be specific, the root inner product for a pair of
patches are first computed as follows:

eri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr
i � xr

i

� �q
; ð5Þ

edi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xd
i � xd

i

� �q
; ð6Þ

where h�i denotes the inner product. Based on eri
� �N

i¼1 and edi
� �N

i¼1,

two feature maps are generated, which are denoted by Fr and Fd,
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respectively. It should be noted that the size of the feature maps Fr

and Fd is smaller than that of the reference and distorted images.
Specifically, since we use 8� 8 patches in this work, the size of Fr

and Fd is W=8� H=8, where W � H is the size of the reference/dis-
torted image. In this paper, we resize the feature maps to the same
size of reference/distorted images for further processing.

Fig. 3 shows some color images with different types of distor-
tions, including Gaussian blur, JPEG compression, spatially corre-
lated noise, change of color saturation and color quantization
with dither. The corresponding feature maps of these images are
shown Fig. 4. It is observed from the figure that the feature maps
are sensitive to the distortions. This indicates that they can capture
the structure and color changes among images with different dis-
tortion types.

The proposed sparse feature similarity is defined as follows:

SFMði; jÞ ¼ 2Frði; jÞ � Fdði; jÞ þ c1

½Frði; jÞ�2 þ ½Fdði; jÞ�2 þ c1
; ð7Þ

where SFM denotes the similarity map of the feature maps, and c1 is
a constant used to ensure numerical stability. SFM can be used to
measure the local structure and color similarities between the ref-
erence and distorted images, which is the first perceptual feature
in the proposed method.

2.3. Reconstruction residual similarity

Sparse representation is characterized by the capacity to cap-
ture the underlying structure in images [26], which is beneficial
for image quality assessment. However, we find that the sparse
representation-based feature maps are not sensitive to contrast
changes, which also have great impact on image quality. Therefore,
a complementary feature is needed to measure the contrast
changes in images. In this paper, we achieve this goal using the
reconstruction residual.

In implementation, the representation vectors and the color
dictionary are first used to reconstruct the original images:
Fig. 3. Example images with different types of distortions in the TID2013 database [33].
noise, (e) change of color saturation, (f) color quantization with dither. (For interpretatio
version of this article.)
Rr
i ¼ Dxr

i ¼
XK
i¼1

dixri ; ð8Þ

Rd
i ¼ Dxd

i ¼
XK
i¼1

dixdi ; ð9Þ

where Rr
i and Rd

i denote the ith reconstructed patches of the refer-
ence and distorted images, respectively. Then the reconstruction
residual images are obtained as follows:

RRr
i ¼ yr

i � Rr
i

�� ��; ð10Þ
RRd

i ¼ yd
i � Rd

i

��� ���; ð11Þ

where yr
i and yd

i denote original reference and distorted image
patches.

In order to highlight structure features in the residual images,
their gradients are further computed using the Scharr gradient

operator [10], which are denoted by Gr and Gd, respectively.
Fig. 5 shows a reference image and its two distorted versions with
contrast changes. Their feature maps and residual gradient maps
are simultaneously shown for comparison.

It is observed from Fig. 5 that the three feature maps are quite
similar, so the contrast distortions cannot be correctly represented.
By contrast, the residual gradient maps can effectively capture the
difference in contrast that cannot be captured by the feature maps.
Based on this observation, the gradient maps of the reconstruction
residual images are used as complementary features to capture the
contrast changes in this paper.

The second feature of the proposed method, which we call
reconstruction residual similarity, is defined as follows:

SRRði; jÞ ¼ 2Grði; jÞ � Gdði; jÞ þ c2

½Grði; jÞ�2 þ ½Gdði; jÞ�2 þ c2
; ð12Þ

where c2 is also a constant.
(a) Reference image, (b) Gaussian blur, (c) JPEG compression, (d) spatially correlated
n of the references to colour in this figure legend, the reader is referred to the web



Fig. 4. Feature maps of images shown in Fig. 3.
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2.4. Luminance similarity

Luminance has great impact on the perceived quality, so it is
also considered in the proposed quality model. Similar to [22],
luminance similarity is computed in a block manner. To be specific,
for each patch in RGB color space, the mean values of the three
respective color channels are first computed. Then their mean is
further calculated and used to represent the luminance level of
the patch. In implementation, the absolute luminance differences
between the reference and distorted patches are denoted by
m ¼ fmigNi¼1, where mi ¼ l xr

i

� 	� l xd
i

� 	�� ��, and lð�Þ is the mean
operation. Then the patch pairs that have sufficiently large lumi-
nance differences are determined:

ðmr ;mdÞ ¼ lðxr
i Þ;lðxd

i Þ
� 	j jl xr

i

� 	� l xd
i

� 	j P medianðmÞ� �
; ð13Þ

where medianð�Þ denotes the median operation. Finally, the
luminance similarity score is computed as follows [22]:

QL ¼
PT

i¼1 mr
i � lðmrÞ� 	 � ðmd

i � lðmdÞÞ þ c3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
i¼1 mr

i � lðmrÞ� 	2 �PT
i¼1 md

i � lðmdÞ� 	2q
þ c3

; ð14Þ

where T denotes the number of block pairs used, and c3 is a small
constant.

2.5. Sparse feature-based pooling

The feature map similarity SFM and residual gradient map sim-
ilarity SRR are two maps, which measure the local distortions
between the reference and distorted images. In order to generate
an overall quality score, a content-based pooling method is
designed to adapt to the characteristics of the HVS. Similar to the
FSIM index [10], a weighting map W is first computed based on
the two feature maps as follows:

Wði; jÞ ¼ maxfFrði; jÞ;Fdði; jÞg; ð15Þ
where maxf�g denotes the pixel-wise maximum. Then the
weighting map is used to pool the sparse feature similarity SFM

and reconstruction residual similarity SRR, producing two scores:
QFM ¼
PW

i¼1

PH
j¼1SFMði; jÞ �Wði; jÞPW
i¼1

PH
j¼1Wði; jÞ ; ð16Þ

QRR ¼
PW

i¼1

PH
j¼1SRRði; jÞ �Wði; jÞPW
i¼1

PH
j¼1Wði; jÞ ; ð17Þ

where W � H denotes the resolution of the image. The final quality
score Q is defined as a linear combination of Q FM;QRR and QL:

Q ¼ a � QFM þ b � QRR þ c � QL; ð18Þ
where a; b; c are parameters used for adjusting the relative impor-
tance of the three components, satisfying aþ bþ c ¼ 1. In this work,
they are experimentally set to a ¼ 0:3; b ¼ 0:45; c ¼ 0:25.
3. Experimental results

3.1. Evaluation protocols

The performance of the proposed method is evaluated on four
popular image quality databases, including TID2013 [33],
TID2008 [34], CSIQ [8] and LIVE [4,35]. These databases contain
both the reference and distorted images, together with the subjec-
tive evaluation scores. The subjective scores are measured by Mean
Opinion Score (MOS) or Difference MOS (DMOS), which are used as
ground truth. Table 1 summarizes the database information.

Three criteria are adopted for performance evaluation, includ-
ing Pearson linear correlation coefficient (PLCC), root mean
squared error (RMSE), and Spearman rank order correlation coeffi-
cient (SRCC). PLCC and RMSE are used to evaluate the prediction
accuracy, while SRCC is used to measure the prediction monotonic-
ity. A good quality metric is expected to produce high PLCC and
SRCC values, and small RMSE value. In order to compute these per-
formance values, a five-parameter logistic fitting is conducted
between the subjective and objective scores:

f ðxÞ ¼ s1
1
2
� 1
1þ es2ðx�s3Þ


 �
þ s4xþ s5; ð19Þ

where si; i ¼ 1;2; . . . ;5, are the parameters to be fitted.



Fig. 5. Images with contrast changes, their feature maps and residual gradient maps. (a) Original image, (b) contrast change level 1, (c) contrast change level 2. From top to
bottom: contrast-distorted images, feature maps and residual gradient maps.

Table 1
Databases for performance evaluation.

Database Reference images Distorted images Distortion types Subjects Subjective score

TID2013 25 3000 24 971 MOS
TID2008 25 1700 17 838 MOS
CSIQ 30 866 6 35 DMOS
LIVE 29 779 5 161 DMOS
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3.2. Performance evaluation on databases

Fig. 6 shows the fitting results of the proposed model and eight
popular FR-IQA metrics on TID2013, which is the largest image
quality database. It is observed from the figure that the proposed
method produces very good fitting results, where the sample
points are very close to the fitted curve. This indicates that the pre-
dicted scores of the proposed model are highly consistent with
subjective scores. It is also observed that IW-SSIM [6], GSM [9],
FSIMC [10] and SFF [22] also produce very promising fitting results,
which look very similar to that of the proposed metric. However,
with these fitting curves we can only roughly know the
performances. The reason is that there are so many (3000) images
in TID2013 database, and a great number of the sample points are
overlapping with each other in the fitting results (see the samples
with high MOS values in Fig. 6). So it is hard to know the exact
distributions of these sample points, which are closely related to
the metric performances of both prediction accuracy and
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Fig. 6. Scatter plots of subjective scores against predicted scores by different quality metrics on TID2013 database.

Table 2
Experimental results of SRRR and state-of-the-art metrics on four databases.

Database Criterion SSIM IW-SSIM VIF MAD GSM FSIMC SFF QSSIM SRRR

TID2013 (3000) PLCC 0.790 0.832 0.772 0.827 0.846 0.877 0.871 0.746 0.892
SRCC 0.742 0.778 0.668 0.808 0.795 0.851 0.851 0.716 0.876
RMSE 0.761 0.688 0.788 0.698 0.660 0.596 0.610 0.826 0.560

TID2008 (1700) PLCC 0.680 0.858 0.808 0.831 0.842 0.876 0.882 0.695 0.883
SRCC 0.678 0.856 0.749 0.834 0.850 0.884 0.877 0.698 0.889
RMSE 0.984 0.690 0.790 0.747 0.724 0.647 0.633 0.965 0.631

CSIQ (866) PLCC 0.858 0.914 0.928 0.950 0.896 0.919 0.964 0.859 0.944
SRCC 0.872 0.921 0.920 0.947 0.911 0.931 0.963 0.873 0.948
RMSE 0.135 0.106 0.098 0.082 0.116 0.103 0.070 0.134 0.087

LIVE (779) PLCC 0.921 0.952 0.960 0.968 0.951 0.961 0.963 0.928 0.958
SRCC 0.923 0.957 0.964 0.967 0.956 0.965 0.965 0.931 0.959
RMSE 10.63 8.347 7.614 6.907 8.433 7.530 7.346 10.171 7.824

Weighted Average PLCC 0.786 0.865 0.826 0.862 0.865 0.893 0.898 0.770 0.905
SRCC 0.765 0.840 0.760 0.854 0.845 0.885 0.887 0.759 0.900
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monotonicity. As a result, the criterion values of PLCC, SRCC and
RMSE should be further computed to evaluate the exact
performances of the metrics.

Table 2 summarizes the experimental results of the proposed
metric and the eight popular metrics in terms of PLCC, SRCC and
RMSE on the four databases. In order to know the overall perfor-
mance of different metrics across the four databases, the database
size-weighted values of PLCC and SRCC are also calculated, where
larger database are assigned bigger weight. In the table, the best
results are marked in bold face.

It is observed from Table 2 that in TID2013 and TID2008, the
two largest databases with the most distortion types, the proposed
method achieves the best performances in terms of both PLCC and
SRCC. In CSIQ database, SFF [22] delivers the best performance. The



Table 3
Experimental results of SRRR and state-of-the-art metrics on 375 color distorted images of TID2013 database.

Criterion SSIM IW-SSIM VIF MAD GSM FSIMC SFF QSSIM SRRR

PLCC 0.694 0.691 0.834 0.845 0.703 0.755 0.821 0.632 0.871
SRCC 0.235 0.234 0.810 0.828 0.242 0.629 0.782 0.419 0.851
RMSE 0.840 0.842 0.643 0.623 0.828 0.765 0.666 0.903 0.573

Fig. 7. An example image and its three color-distorted versions. (a) Reference image, (b) image color quantization with dither of level 1, (c) change of color saturation, (d)
image color quantization with dither of level 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Quality scores of the distorted images shown in Fig. 7.

Image MOS SSIM IW-SSIM VIF MAD GSM FSIMC SFF QSSIM SRRR

Fig. 7(b) 5.351 0.975 0.986 0.760 35.092 0.998 0.987 0.994 0.962 0.995
Fig. 7(c) 4.684 0.999 0.999 0.992 0.000 0.999 0.998 0.996 0.994 0.991
Fig. 7(d) 2.895 0.852 0.892 0.380 106.501 0.990 0.888 0.941 0.828 0.973

Fig. 8. Six color-distorted images with similar subjective scores, and their objective scores predicted by the proposed SRRR metric. (a), (b) and (e) are distorted by chromatic
aberrations; (c) and (d) are distorted by color quantization with dither; (f) is distorted by change of color saturation. All images are from TID2013 database [33]. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
Impact of sparsity degree on TID2013 database.

Sparsity 1 2 3 4 5 6 7 8

PLCC 0.892 0.886 0.877 0.869 0.861 0.856 0.850 0.846
SRCC 0.876 0.868 0.858 0.849 0.841 0.835 0.828 0.825
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proposed method produces the second best SRCC and the third
best PLCC, which are quite similar with those of MAD [8]. In LIVE,
most of the quality metrics produce very good performances. The
performance of the proposed method is only slightly worse than
the best result. Finally, according to the weighted average values,
the proposed method achieves the best overall performance across
the four databases, followed by SFF [22] and FSIMC [10]. It should
be noted that both SFF and FSIMC also take into consideration color
in their quality evaluation. this further demonstrates that color is
needed for more effective image quality evaluation.



Fig. 9. Training image set II and the color dictionary (Dict. II: 192� 400). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Training image set III and the color dictionary (Dict. III: 192� 512). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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3.3. Performance evaluation on color-distorted images

The proposed method employs a color dictionary to represent
the color degradations in images. The color dictionary can capture
the multi-channel color distortions in a holistic manner. As a
result, the proposed method can be used to evaluate the quality
of color-distorted images.

Among the four databases, only TID2013 contains images with
color distortions. Specifically, there are three kinds of color distor-
tions in TID2013, including change of color saturation, image color



Table 6
Performances of the proposed method on four databases when different dictionaries are used for sparse representation.

Dictionary LIVE CSIQ TID2008 TID2013

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Dict. I (192� 256) 0.958 0.959 0.944 0.948 0.883 0.889 0.892 0.876
Dict. II (192� 400) 0.957 0.958 0.943 0.946 0.881 0.887 0.892 0.876
Dict. III (192� 512) 0.958 0.959 0.944 0.947 0.882 0.889 0.892 0.876
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quantization with dither and chromatic aberration. For each distor-
tion type, there are 125 images, so there are totally 375 color-
distorted images. To evaluate the performance of the proposed
method when used for quality evaluation of color-distorted
images, we test the proposed method on these 375 images.

Table 3 lists the experimental results of different metrics on the
color-distorted images, where the best result is marked in boldface.
It is obvious in the table that the proposed method achieves the
best performance, and it significantly outperforms the existing
metrics. This demonstrates that the proposed method is effective
in evaluating the quality of color-distorted images.

Fig. 7 shows a reference image and its three color-distorted ver-
sions. The quality of these images degrades sequentially from Fig. 7
(b)–(d). Table 4 summarizes the objective scores of the distorted
images predicted by different quality metrics, where the result of
the proposed method is marked in boldface. It is observed that
with the decreasing MOS values, the objective scores predicted
by the proposed method decrease accordingly, which indicates
that the predicted scores are consistent with the subjective scores.
By contrast, the compared metrics cannot correctly predict the
subjective scores among the three distorted images.

Fig. 8 further shows six color-distorted images with very similar
MOS values, together with their objective scores predicted by the
proposed metric. It is known from the figure that the predicted
SRRR scores are also very similar, which indicates that they are
consistent with the subjective scores. Furthermore, with the slight
increase of the MOS values, the predicted scores also increase
slightly. This indicates that the proposed method can differentiate
tiny differences of color distortions.

3.4. Impact of sparsity degree

Sparsity degree refers to the number of basis vectors used in
sparse representation of a signal. In this part, we test the impact
of sparse degree on the performance of the proposed method.
Table 5 lists the experimental results in terms of PLCC and SRCC
on TID2013 database, where the best result is marked in boldface.

It is observed from Table 5 that the proposed method achieves
the best performance when the sparsity degree equals one. With
the increase of sparsity degree, the performance degrades gradu-
ally. It should be noted that this conclusion has been reached by
experiments, and rigorous proof is hard to achieve. However, we
may explain the potential reasons behind this result as follows.
In the proposed model, two complementary features are adopted
to measure the distortions in images, namely the sparse feature
similarity and reconstruction residual similarity. The sparse fea-
tures are employed to evaluate the underlying structure changes
(usually involved in heavy low-frequency distortions) in images,
while the corresponding reconstruction residuals are mainly used
to capture contrast and high-frequency distortions. Therefore, set-
ting the best sparsity degree is in fact a task to achieve an optimal
trade-off between these two aspects. It has been demonstrated in
Zhang et al.’s work [11] that the quality prediction performance
is mainly determined by the first several basis vectors, which are
most important to the perception of image quality. According to
the results reported in [11], using the first basis vector (sparsity
equals one) alone contributes to more than 80% of the overall per-
formance. Therefore, the first basis vector is most important in
characterizing the structure degradations in images. This coincides
with the results of the proposed model. In this paper, all experi-
ments are conducted with sparsity degree 1. This is also beneficial
in practice, because lower sparsity degree is more computationally
efficient.
3.5. Impact of dictionary

In the proposed method, a universal overcomplete color dic-
tionary is used for sparse representation. Therefore, it is important
to investigate the performance of the proposed metric when differ-
ent dictionaries are used. To this end, we train another two over-
complete color dictionaries with bigger size (Dict. II of size
192� 400 and Dict. III of size 192� 512), and then test the perfor-
mances of the proposed method using the new dictionaries. Figs. 9
and 10 show the training images and the corresponding color dic-
tionaries, which have been visualized for display. It should be
noted that each of the two training image sets contains 20 natural
color images, which are all collected from the Internet. Further-
more, the training images are completely different, which are also
different from those used to train the aforementioned dictionary in
Fig. 2 (Dict. I of size 192� 256).

Table 6 summarizes the performances of the proposed method
when different dictionaries are used in the experiments. From the
simulation results, we have the following two observations. First,
the proposed method is not dependent on training images.
Although completely different images are used to train the dic-
tionaries, the performances are quite similar. This is desirable in
practical applications, meaning that we can randomly select natu-
ral images to train the dictionary and meantime achieve very sat-
isfactory results. Second, dictionary size has very little impact on
the performance of the proposed method. In our experiments, even
the dictionary size is doubled from 192� 256 to 192� 512, the
performances almost keep unchanged. With the consideration that
a small-size dictionary is computationally more efficient, we use
Dict. I of size 192� 256 in this work.
4. Conclusion

We have presented a novel sparse representation-based color
image quality assessment method in this paper. The proposed met-
ric evaluates the quality of a color image by combining sparse
representation-based feature maps and reconstruction residuals.
The feature map is used to capture the underlying structure and
color degradations, while the reconstruction residual is used to
capture the contrast changes in images. By combining them with
the luminance similarity, an overall quality score is generated to
predict the visual quality of color images. We have evaluated the
performance of the proposed method on public databases. The
experimental results have demonstrated that the proposed method
produces the state-of-the-art performance when evaluating tradi-
tional distortions and it is advantageous over the existing metrics
when used for quality assessment of color-distorted images.
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